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ABSTRACT. This study considers a general class of two-
dimensional, discrete population models where each per capita
transition function (fitness) depends on a linear combination
of the densities of the interacting populations. The fitness
functions are either monotone decreasing functions (pioneer
fitnesses) or one-humped functions (climax fitnesses). Con-
ditions are derived which guarantee that an equilibrium loses
stability through a period-doubling bifurcation with respect to
the pioneer self-crowding parameter. A constant term which
represents stocking or harvesting of the pioneer population is
introduced into the system. Conditions are determined under
which this stocking or harvesting will reverse the bifurcation
and restabilize the equilibrium, and comparisons are made
with the effects of density dependent stocking or harvesting.
Examples illustrate the importance of the concavity of the pi-
oneer fitness in determining whether stocking or harvesting
has a stabilizing effect.

1. Introduction. Systems of nonlinear difference equations are
used to model the effects of population density on the interactions of
discretely reproducing populations of animals and plants. The types of
interactions include competition, cooperation, and predation. It is now
well known that such systems can possess complex dynamical behav-
ior, even a single population with a quadratic growth function might
exhibit a cascade of period-doubling (or flip) bifurcations culminating
in chaotic oscillations as illustrated by R.M. May [17].  Typically a
period-doubling bifurcation occurs when varying a parameter of the
system causes an eigenvalue of an equilibrium to pass through -1.
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The equilibrium often loses stability and a stable cycle of period 2
appears. Continued parameter changes may result in a cascade of
period-doubling bifurcations and the onset of chaos. Costantino et
al. [6] report period-doubling bifurcations in data from experiments
with flour beetle populations which they model with a three stage
age-structured, discrete system. Franke and Yakubu [12, 131 observe
cascades of period-doubling bifurcations in models for competitive in-
teractions of pioneer and climax populations. Such cascades occur for
systems of ordinary differential equations which model the interactions
of continuously reproducing populations. For example, Gardini et al.
[14]  illustrate a period-doubling transition to a chaotic attractor for
three-dimensional Lotka-Volterra systems, and Buchanan and Selgrade
[2] discuss similar behavior for a three-dimensional model of the inter-
action among pioneer and climax populations.

Usually chaotic behavior is undesirable in an ecological system. Sel-
grade [21]  shows how systems which undergo period-doubling bifur-
cations due to variations in intrinsic parameters may be restabilized
by extrinsic stocking or harvesting which is proportional to popula-
tion density. Here we compare and contrast the results for density
dependent stocking or harvesting with results for constant rate stock-
ing or harvesting. We consider a general class of Kolmogorov models
where each per capita transition map (called the fitness) is a function
of a linear combination of the densities of the interacting populations.
This lumped density assumption allows a population’s response (fit-
ness) to density pressure to be separated from intraspecific and inter-
specific competitive effects. Previous studies of such systems include
Comins and Hassell [4], Hassell  and Comins [15], Hofbauer, Hutson,
and Jansen [16], Cushing [‘7,  81, Selgrade and Namkoong [22,  231,
Franke and Yakubu [g-13],  Selgrade [20], Sumner [27, 281, Yakubu
[29], Buchanan and Selgrade [2, 31, Selgrade and Roberds [24,  251,
and Selgrade [21].

The fitness functions in our models will be either monotone decreas-
ing functions (pioneer fitnesses) or one-humped functions (climax fit-
nesses). The interaction of a pioneer population and a climax popula-
tion permits competition and predation in different regions of the same
phase space. Yakubu [29]  hs ows that stocking or harvesting may be
used to obtain stable coexistence in a system of two competing pioneer
populations where there is exclusionary dynamics without stocking or
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harvesting. Stone [26] discusses reversing period-doubling bifurcations
in a model for a single pioneer population with a constant immigration
(stocking) term. Stone’s bifurcation parameter is the intrinsic growth
rate and the period-doubling reversals appear as “bubbles” in the bi-
furcation diagram where the population density is plotted against the
growth rate. Our intention is to determine when period-doubling bifur-
cations can be reversed by varying the stocking or harvesting parameter
which is extrinsic to the population interaction,

Section 2 discusses the model equations and conditions for a period-
doubling bifurcation with respect to the pioneer self-crowding param-
eter which destabilize an equilibrium. We show that if any of four
sets of necessary conditions are satisfied then either a subcritical or a
supercritical period-doubling bifurcation must occur. In Section 3 we
introduce a constant stocking or harvesting term into the pioneer tran-
sition equation. We determine conditions under which this stocking or
harvesting will reverse the bifurcation and restabilize the equilibrium.
This is accomplished by studying the geometry of the bifurcation curve
in the space of parameters given by the intrinsic crowding parameter
and the extrinsic stocking/harvesting parameter. Section 4 discusses
restabilizing the equilibrium of prey-predator type. For density depen-
dent stocking or harvesting, Selgrade [21]  shows that if the pioneer
fitness function has nonnegative concavity, which is the case for all
familiar examples in the modeling literature, then an equilibrium of
prey-predator type may be restabilized if and only if stocking is done.
Here we present an example where constant rate harvesting is needed
to restabilize an equilibrium of prey-predator type. In Section 5 we
illustrate the importance of the size of the concavity of the pioneer
fitness in determining whether stocking or harvesting will restabilize
the equilibrium of competitive type. Also we discuss an example where
stocking reverses a cascade of period-doubling bifurcations.

2. Model equations and conditions for period-doubling.
In order to study period-doubling bifurcations we consider systems
of two-dimensional, nonlinear difference equations which model the
interactions of discretely reproducing populations. L e t  xi a n d  x2
denote the densities of two populations. Let yi, for i = 1,2,  denote
the weighted total density variable for xi, i.e.,

yi  = Gil X1  + Ci2 X2
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where cij 2 0 is called the interaction coeficient and reflects the effect
of the jth population on the ith population. The 2 x 2 matrix C = (cij)
is called the interaction matrix. The per capita transition function, the
fitness fi, of the ith population is a smooth function of yi. Our model
equations are

(2.1) XI  = xi fi(Yi), i=1,2

where xi denotes the density of the ith population at the next genera-
tion. Because (2.1) is of Kolmogorov-type, if the values of fi are always
nonnegative then the nonnegative quadrant is invariant for solutions to
(2.1). However, we will not assume that this is always the case.

An equilibrium in the interior of the positive quadrant occurs where
each fitness has the value 1. Since fr is a pioneer fitness then we assume
that there is exactly one value y: > 0 so that fi(yT)  = 1. Hence the
xi-isocline is the line y: = cl1 xi +ci2  x2. Also we assume this value y:
is nondegenerate, i.e., fi(yT)  #  0. We take the climax fitness f2 to have
exactly two positive values where it assumes the value 1, which also are
nondegenerate. Thus the isoclines of the climax population are two
parallel lines. An equilibrium in the positive quadrant occurs precisely
where the pioneer isocline intersects one of the climax isoclines, see
Figure 1. If y*  = (yi,  yz) is a vector such that fi(y,T)  = 1, for each i,
then an interior equilibrium E = (er,  e2)  is a solution to the system of
linear equations

(2.2)

Hence we find

CE = y”.

(2.3) el = YTC22  - Yh2

detC  ’
e2 = Yihl  - YTC21

detC  ’

For E to be in the positive quadrant, both numerators in (2.3) must
have the same sign as det C. This equilibrium is isolated if det C #  0,
which we always assume.

The stability of an interior equilibrium E may be determined by the
Jacobian matrix of the right side of (2.1). At x = (xi, x2)  this matrix
is given by:

(2.4) J(x) =
[
f1p f2;y2) +

I [
xlfp) x2fy(y2) c.

I
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FIGURE 1. Pioneer (p) and climax (c) isoclines; equilibria El and Ez.

When (2.4) is evaluated at E, the first matrix in (2.4) becomes the
identity. Let D(E) denote the 2 x 2 diagonal matrix in (2.4) with entries

elfi and ez.G(Yz*)- Notice that the eigenvalues of the product
D(E) C are left-translations by the amount 1 of the eigenvalues of
J(E). If the eigenvalues of J(E) are inside the unit circle in the
complex plane, which implies that E is asymptotically stable, then
the eigenvalues of D(E) C are inside the circle of radius 1 centered at
-1 in the complex plane. Hence, the trace of D(E) C is between -4
and 0 and the determinant of D(E) C is between 0 and 4, i.e.,

(2.5) 0 < det [D(E) C] = ele~f~(yT).fhL2  det C < 4.

Since fi(y;)  is negative, for (2.5) to hold we must have

(2.6) fi(ya)  det C < 0.

Notice that (2.5) and (2.6) still hold if one eigenvalue of J(E) is -1
and the other is inside the unit circle. If one eigenvalue of J(E) is -1
then det [D(E) C] #  0 is equivalent to the other eigenvalue of J(E)
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not equal to 1 ; if one eigenvalue of J(E) is -1 then det [D(E) C] #
4 is equivalent to the other eigenvalue of J(E) not equal to -1.
Thus, for an equilibrium to lose stability by its smaller eigenvalue
passing through -1, it is necessary that (2.5) holds and that the
slope of the climax fitness f.J,(yz) and det C have opposite signs. The
term det C measures the difference between the intraspecific and the
interspecific competition. If the intraspecific competition is less than
the interspecific competition (det C < 0) then &(ys)  must be positive
and, hence, the equilibrium El must occur where the pioneer isocline
intersects the climax isocline which is closer to the origin (Figure 1).
The off-diagonal terms of J(El)  have opposite signs and, hence, at Ei
the pioneer and climax populations interact like prey and predator,
respectively. We refer to El as an equilibrium of prey-predator type.
On the other hand, if the intraspecific competition is greater than
the interspecific competition then f;(yz)  must be negative; so the
bifurcation equilibrium Ex  is the intersection of the pioneer isocline and
the climax isocline farther from the origin. The off-diagonal terms of
J(E2)  are negative and the populations truly compete with each other
at this equilibrium. We refer to E2  as an equilibrium of competitive

type.

Computing the eigenvalues Ah  of J(E), we obtain
(2.7) 1

h = -P + el.fl(yT)cll  + e2fi(Yz*)c22)2

f i (elf~(y~)cll  - e2fi(vz*)c22)2  + 4ele2cl2c21fi(y~)f~(y,*).

From (2.7) observe that the eigenvalues of an equilibrium of competitive
type are real and distinct. However, an equilibrium of prey-predator
type may have complex eigenvalues and, in fact, undergo Hopf bifur-
cation, see Selgrade and Roberds [24]: But our bifurcation equation,
(2.8) below, will not be valid if the eigenvalues have nonzero  imaginary
parts. For a stable equilibrium to undergo period-doubling, we need
A- to pass through -1. Solving (2.7) for A- = -1, we obtain

(2.8) 0 = 4 + %fi(vT)cll + 2e2fi(yi)m + ele2f:(y;)f~(y2*)detC.

The right side of (2.8) may be rewritten as

1 + tr J(E) +  det J(E).



REVERSING PERIOD-DOUBLING BIFURCATIONS 213

This sum is positive if the eigenvalues of E have nonzero  imaginary
parts; hence, an equilibrium whose coordinates satisfy (2.8) must have
real eigenvalues-one eigenvalue is -1 and the other is inside the unit
circle if (2.5) holds.

Selgrade and Roberds [24,  251 indicate that the intraspecific com-
petition coefficients cl1 and ~22  are convenient, intrinsic bifurcation
parameters. For simplicity we choose cl1 as our bifurcation parameter
and solve (2.8) for cl1  in terms of parameters which are independent
of ~11, i.e., the other interaction coefficients, the total density variables
y,’  at equilibrium, and the slope of each fitness at the appropriate ~5:
(2.9)

211 =
4ClzCzl  + 2Y,*C21C22f;(Y;)  + C21Y:(YTC22  - Y312)f:(Y;).fi(Yz+)

[2 + Y;f;(Y;)lpc22  + f:(Y;)(Y1*c22  - Y;/2*c12))

For the bifurcation to occur, it is necessary that the right side of (2.9)
be positive.

To determine the direction of bifurcation we need to find dX-/&ii
at cl1 = Eir.  From (2.3) we compute

(2.10) de1 -c22el
-=
hl de t  C

and de2 c2lel

-=&EC’ac11

We differentiate A- with respect to cl1 and use (2.8) and (2.10) to
evaluate at cl1 = 211.  Some tedious algebraic manipulation yields

(2.11)
dX- -2elc21[2  + YT.fiM)l
- = e2 det C [4 + elfi( + ezfi(&)c22]  ’dell

Using (2.5) and (2.8) we conclude that the term in brackets in the
denominator of (2.11) is positive. Hence the signs of det C and [2 +
y/rfi(y;)]  determine the sign of (2.11). If (2.11) is negative then E loses
stability as cl1 increases; and if (2.11) is positive, then E loses stability
as cri  decreases.

Sufficient conditions for a bifurcation depend on the type of equilib-
rium. For instance, if El is of prey-predator type where the slope of
the climax population f.(y;)  is positive, then from (2.6) det C must
be negative and so is the term y;c22  - y;ciz  which is the numerator of
the first coordinate of El. However, this term must be positive if the
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equilibrium is of competitive type because the slope of the climax pop-
ulation j’i(y;) is negative and det C is positive. The numerator of the
second coordinate of the equilibrium at Eli  is obtained by substituting
(2.9) into (2.3) to get

(2.12) y/2*&  - y;czi = -2c21p  + Y;f:(Y;)l(Y;c22  - Y312)

[2 + Y;f;(Y;)1{2c22  + f:(Y;)(Y;c22  - Y312))’

Inequality conditions on the terms on the right side of (2.12) are needed
to guarantee the appropriate sign for (2.12). Selgrade [21] derives four
sets of inequalities which guarantee bifurcation and are listed below.
We assume that (2.5) holds and obtain the value in (2.9), Err,  for the
bifurcation parameter by solving the bifurcation equation (2.8). In this
situation, necessary and sufficient conditions for a bifurcation to occur
at El are:

Case (i).

(2.13) yTc22  - yZ+cr2 < 0 and 2 + y~f~(y~)  < 0.

The inequalities in (2.13) guarantee that 211  > 0, det C < 0, and
the numerators of the coordinates of El are negative; hence, El is in
the positive quadrant when cl1  = Eli. The corresponding conditions
for bifurcation at E2 are more complicated, see Selgrade [21],  and are
arranged according to the signs of [2 + yzfi(ys)]  and [2 + y~f~(y~)].

Case (ii).

YTc.22 - Y312  > 0, 2+Y;f;(Y;)  co, 2+Y;fl(Y;)  < 0,

a n d

(2.14) 2c22  + f:(Y;)(Y;C22  - T&12)  < 0.

Case (iii).

y;c22  - Yz*C12  > 0, 2 + Y2*.g(Y2+)  < 0, :!+Y/;.f:(Yl*)  >o,
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and

(2.15) 4Cl2  +  &f;(y;){2C22  +  f;(Y;)(Y;C22  - Y;c12)}  < *.

Case (iv).

y;c22 - Y;Q2  > 0, 2 +YX(Y;)  > 0, 2+YX(Y;)  <Of
‘kl2  +  Y;f;(Y;@c22  +  f;(Y;)(Y;c22  - Y2*c12))  ’  *,

and

(2.16) 2c22  + fl(YXY ;c22 - Yh2)  > 0.

The inequality conditions in Cases (i) through (iv) guarantee that E
loses stability as cl1  passes through err  because the smaller eigenvalue
passes through -1, which generically is a period-doubling bifurcation.
However, it is much more difficult to prove that the curve of period-
2 points is “parabolic” in shape. Sufficient conditions for this are
derived in Selgrade and Roberds [25] and involve applications of the
implicit function theorem. Specifically, when considering the phase
variables graphed against the parameter err  in three dimensions, we
are interested in describing the set of points of prime period-2 as cl1
varies through its bifurcation value 211. This set is a subset of the two-
dimensional center manifold parameterized by err and a phase variable.
Selgrade and Roberds [25] provide sufficient conditions for showing that
this set may be viewed locally as the graph of cl1  as a function of the
phase variable and for determining the direction of bifurcation, i.e., the
concavity of the graph. The condition for existence of this function is
that the following combination of the first and second derivatives of the
fitness functions is nonzero  at (err, E) where Fi(crr,~r,~) z zJi(yi):

(2.17) 2 u.& bli[& + -$-s + $f$--1.
j=l i=l 3

The matrices A = (aij)  and A- ’ = (bij) are obtained from changes
of coordinates needed to put (2.1) in standard form, see Selgrade and
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Roberds [25] for details. We compute the partial derivatives needed to
evaluate (2.17) for i,j = 1,2  and i #  j as

(2.18) a2Fi
~ = f,‘(Yi)Cij  + xif~‘(yi)c&j,
dxj axi

a2F,
-=
acllaxl

hf;h) + &f:I(Yl)Cll, d2F2  = 0
~
acllaxl

7

a2F,
acllax2

=  ~~&‘(yi)ci2  a n d  ~a2F2 = 0
acllax2

.

If p is the eigenvalue of E inside the unit circle, then the matrix A is
given by

(2.19) A = -cl2ed(yi) -cl2elfi(yl*)

2 + mdi(yi) 1 - P + cllelfi(Yi) I ’

After a lengthy computation using (2.10),  (2.18) and (2.19),  the ex-
pression in (2.17) is found to be

(2.20) 12 -t Y2*fi(Y2*)1 {zc22  + f:(Yi)(Yic22  - Yz*ClZ))

(1 + P) det C

The facts that ,0  #  -1 and that one of the cases (i) through (iv) holds
assure that each factor in (2.20) is nonzero. Thus, we have the following
result :

Proposition 2.1. Suppose that E = (er, e2)  is an equilibrium of
(2.1) in the positive quadrant. Assume that

0 < elez.fi(yi)fi($J  detc  < 4

and that one of the sets of inequalities (i), (ii), (iii), or (iv) holds. Then
the expression (2.20)as nonzero  at E and a period-doubling bifurcation
occurs at (&I,  E) where Cl,  is given by (2.9).
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To determine the concavity of the set of period-2 points and, hence,
to establish whether the bifurcation is subcritical or supercritical,
additional combinations of first, second, and third derivatives of the
fitness functions like (2.17) are needed, see Selgrade and Roberds [25].
However, these formulas do not simplify for the general system (2.1) as
(2.17) does. They will be determined for specific examples in Sections
4 and 5.

3. Constant rate stocking and harvesting. Since varying the
pioneer self-crowding parameter cl1 destabilizes the equilibrium, one
might suspect that stocking or harvesting the pioneer population may
restabilize the equilibrium. One approach to stocking or harvesting
is to add a term to the pioneer difference equation which is directly
proportional to the current pioneer density. Density-dependent stock-
ing or harvesting retains the Kolmogorov form of the difference equa-
tions and the isoclines are still lines. Hence, mathematical analysis
proceeds without much additional algebraic complication, see Selgrade
[21]. However, from a practical point of view, a manager of an ecosys-
tem would have to know the pioneer density to stock or harvest at
a proportional rate. Therefore, here we add a constant term to the
pioneer difference equation to represent constant rate stocking or har-
vesting and we obtain:

cm x: = 51 fl(Cll~l + Cl2 x2)  + a

x;  = 52 f2(c21  Xl +- c22 22).

Notice that the second equation in (SH) is of Kolmogorov form so the
climax isoclines are still lines. However, this is not true for the pioneer
population. Although (SH) is more complicated mathematically than
density-dependent stocking or harvesting, we feel that (SH) is more
realistic biologically. We consider (SH) as a system in the two parame-
ters a and cl1 and study destabilizing period-doubling bifurcations with
respect to cl1 for a = 0 and restabilizing period-doubling bifurcations
with respect to a for a near 0. In general, harvesting (u  < 0) may cause
the pioneer population density to become negative. In their study of
the harvesting of one population, Cooke, Elderkin, and Witten  [5] use
a step function to curtail harvesting if the population density of the
next generation will be negative. However, since a is always small in
our studies, we do not encounter negative population density and do
not need to consider a discontinuous harvesting function.
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An equilibrium E = (er,  ez) of (SH) is a solution (x1,x2) to the
system

(3.1)
Xl = 21 fl  (Cl1  Xl + Cl2  x2)  + a

1 = fi(C21~1  + c22 22).

The x2-isoclines  are determined by fz(yz)  = 1 and, hence, are the
pair of parallel lines given by yz  = ~21  x1 + ~22  x2. Notice that
they are the same as the case without stocking or harvesting, i.e.,
they do not depend on a or err.  To study the xr-isocline  consider
H(xr, x2)  3 x1 - xrfr(crr  x1 + cl2 x2).  For different a’s, the isoclines
are the level curves

c,  = {(x1,22)  : H(Xl,X2) = u}.

When a = 0, the pioneer isocline .Le is a line. Along Ce  we compute
the gradient vector of H,

GH = -x~.f;(y~)[d+  ~123,

which points in the positive direction. Hence for a > 0, the pioneer
isoclines L, are curves above and to the right of the line Le in the
positive quadrant, see Figure 2. Similarly, for a < 0 the pioneer
isoclines lie below and to the left of the line Cc.

As before, let yf and y; denote the values of the total density
variables at equilibrium. y$ is independent of the two parameters a
and err.  However, y: depends on both parameters. To understand
how the coordinates of E depend on a and err,  we apply the implicit
function theorem to (3.1) to solve for (x1,x2) as a function of (a, err)
near (a, err)  = (0, Err). Without relating the details, the appropriate
nonzero  Jacobian at (er , ez, 0, Zrr  ) which guarantees the application of
the implicit function theorem is

(3.2)

Notice that (3.2) is always positive because (2.6) holds. Then the
partial derivatives of the coordinates of E at (a,crr) = (0,&r)  may
be computed as

de1 -c22 de2 c21
-= a n d  - =

(3.3)  da  elfikG)detC  iz2 elfi(y?)detC
de1 --c22el c2lel-=
&l d e t  C

and
-=detC’hl
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FIGURE 2. Pioneer (p) and climax (c) isoclines for a 2 0.

The dependence of yi on a and cl1 may be obtained by rewriting the
first equation in (3.1) at equilibrium as

Since fr(yr) is decreasing, (3.4) implies that if a > 0 then fr(yr)  <  1
and if a < 0 then fr (y:)  > 1. Differentiating (3.4) and evaluating at
a = 0 gives

(3.5)
ay,*  -1 i
- = elfida and ifi1

- = o .

Hence, at a = 0, y;(a,  err)  is an increasing function of a.

We discuss the geometric changes which accompany the destabilizing
bifurcation at the equilibrium of prey-predator type, El. Consider the
bifurcation with respect to cl1 when a = 0. Since the numerators of
the coordinates of El are negative then the xl-intercept, y;/crr,  of
the pioneer isocline is to the right of the climax isocline and the xz-
intercept of the pioneer isocline is below the climax isocline. Hence,

-.
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the positions of the linear isoclines determining El when a = 0 are
as depicted in Figure 2. From (2.11) and (2.13), El loses stability
as cl1  increases through &I. W h en cl1  increases, the pioneer isocline
pivots to the left about its fixed zz-intercept.  This causes El to slide
down the climax isocline as it destabilizes, which is consistent with the
facts that dei/dcri > 0 and dez/dcii  < 0 from (3.3). To move El
back up the climax isocline by varying a from 0 requires that a be
positive as shown in Figure 2. This is consistent with the facts that
&i/da  < 0 and dez/& > 0 from (3.3). Hence, one might suspect
that increasing pioneer stocking (u > 0) would restabilize El. In fact,
in the case of density-dependent stocking or harvesting, Selgrade [21]
proves that if the pioneer fitness function has nonnegative concavity,
which is the case for all familiar examples in the modeling literature,
then Ei is restabilized if and only if stocking is done. However, the
geometric heuristics are somewhat deceptive because the stability of El
does not actually depend on the position of El but on the eigenvalues
of El which vary with both a and cl1  and are subtly related to a
balance between the predatory effect of the climax on the pioneer and
the pioneer self-crowding. In Section 4, for constant rate stocking or
harvesting, we illustrate an example where harvesting a pioneer with
fitness having nonnegative concavity restabilizes El.

Similar geometric changes occur when the equilibrium of competitive
type, E2,  loses stability via a bifurcation when a = 0 and cl1  varies
through &I.  Since det C > 0 and so the numerators of the coordinates
of Ez are positive, the positions of the linear isoclines are interchanged
from that depicted in Figure 2. Conditions (ii), (iii), and (iv) guarantee
destabilizing bifurcations at E2  which may occur as cl1  increases or
decreases. Stocking or harvesting will restabilize Ez depending on the
situation.

To study the bifurcations rigorously we need a formula for the
eigenvalues of E. The derivative matrix of the right side of (SH) is
given by (2.4). Evaluating at E and using (3.4) to write fi(yr(u,  cri))
as 1 - u/el,  we get

(3.6)
l-u/e1 0o  1  + “‘ffyi)1 [ ’

e2MzG) 1 C.
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The eigenvalues A*  of J(E) are given by

(3.7)

1

(

a
A& = -

2
2 + elfi(y;)cll  + e2fi:(v;)c22  - -

el >

* i
I.
(ekf~(yT)cll  - e2.fZYz*)c22)2

+ 4ele2cl2czlf:(Yr)f~(Y,‘)

+ 2 - 2(elf~(y;)sl  - e2AXyS)czz)]
112

e4 el
.

E loses stability when the smaller eigenvalue A- passes through -1.
Solving (3.7) for A- = -1 we get the bifurcation equation

0 = 4 + 2elfi(y;) ~11  + 2e2fi(yl)c22

+eleaf:(y;)f~(~a)detC

(3.8) 2a ac22e2fi(yZ)- - -
el el

E G(a, ql).

Notice that this bifurcation equation differs from (2.8) because of the
last two terms which depend on a. Define the bifurcation curve l3C as
the set of points

LX  z {(a, cll) : G(a,  cll) = 0).

Each of the four inequality conditions (i), (ii), (iii), or (iv) guarantees
that the equation G(a,crr) = 0 has a solution (a,crr) = (0,&r)  where
211 is given by (2.9). Thu s , near (0,&l), the set of points f3C is
nonempty. To determine if stocking or harvesting will restabilize E,
we need to understand the nature of the curve BC near (0, err).

We appeal to the implicit function theorem to show that BC may
be considered the graph of cl1 as a function of a near (0,&r). The
appropriate sufficient condition is

$x bl) # 0.

Differentiating (3.8) at ( a,cll) = (0,&r), using (3.3) and (3.5),  and
simplifying, we obtain

(3.9)
dG
-=
&l

ai2 + Y;f:(Y;)l.
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The term [2 + Y;~:(Y:)] is nonzero  because of conditions (i) through
(iv). Hence, we have the following result:

Proposition 3.1. With the same assumptions as Proposition 2.1,
consider the period-doubling bifurcation in the two-parameter bifurca-
tion space determined by (a, ~11).  Then the expression (3.9) is nonzero
and the bifurcation curve BC is the graph of ~11  as a function of a in a
neighborhood of (a, ~11)  = (0,211).

The slope of t3C at (0,&r)  is the negative of dG/da  divided by
dG/dcii.  Computing dG/da  from (3.8) and evaluating at (0, Eli), we
get
(3.10)
dG calf~(yz*){2czz+fi(yT)(YTc22-yz’c12))2--4c12c21c22f:(YT)-=
da elfi(y~)detC{2c22  +f:(Y1*)(y;czz  - ~z*c12))

4cl2c2lfi'(y~)(y1*C22-y~C~2)-2C~2~2l[f~(Y~)12(Y1+~22-Y~~12)-
e1fi(y$)detC{2cz  +fi(Y1*)(y;cz  - ~2*~12)) ’

If we compare (3.10) to the analogous formula for density-dependent
stocking or harvesting (see Selgrade [21]),  we see that the terms in
the numerator are identical except that the last term is absent in the
density-dependent case. As we discuss in Section 4, this term which
depends on the square of the pioneer derivative may change the sign of
dG/da  and provide for greater variety in the bifurcation curves for the
case of constant rate stocking or harvesting.

Before discussing the strategies for restabilizing the two types of
equilibria, we mention the significance of the term [2+y;  fi  (y;)]  which is
essential to the nondegeneracy of the bifurcation curve via (3.9) and the
original period-doubling bifurcation via (2.11). The product yr f i (yz)
is the linear drop in pioneer fitness from its maximal value when total
population is zero to its value of 1 at equilibrium. Because the pioneer
fitness is usually concave up, the actual fitness drop is greater than the
linear fitness drop. Since 2 is the sum of pioneer and climax fitnesses
at equilibrium, the term [2 + y; fi  (y;)] measures the difference between
the pioneer fitness drop and the total ecosystem fitness at equilibrium.
We refer to [2+yrfi(y;)]  as th e p ’zoneer fitness variation. If the pioneer
fitness variation is negative, then there is a significant decrease in
pioneer fitness from its maximum to its equilibrium level. If the pioneer
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fitness variation is positive then this decrease is not so great. For two of
the most common pioneer fitnesses, this pioneer fitness variation may
be written in terms of the maximum pioneer fitness. If the pioneer
fitness has either the exponential or the linear form, i.e.,

(3.11) fl (yl)  = b edmy or PI = b  - ~YI,

then the term [2 + y;f{(y;)] becomes 2 - log(b) or 3 - b, respectively.
Obviously, b = fr(O)  which is the maximum for the pioneer fitness.

4. Restabilizing the equilibrium of prey-predator type. The
equilibrium, El, of prey-predator type loses stability as cl1 increases
through 211 when the inequalities in (i) are satisfied. If the graph of the
bifurcation curve BC has positive slope at (0, cl,), then stocking (a > 0)
will restabilize El. The familiar pioneer fitnesses in the modeling
literature have nonnegative concavity, i.e., & > 0. For instance, the
exponential and rational fitnesses are concave up and the linear fitness
has zero concavity. Selgrade [21]  proves that for density-dependent
stocking or harvesting if the pioneer fitness has nonnegative concavity
then the bifurcation curve f3C always has positive slope. Hence, El is
restabilized if and only if stocking is done. However, for constant rate
stocking or harvesting the derivative dG/da  has a term that is lacking
in the case of density-dependent stocking or harvesting. When this
new term is large enough, the sign of aG/da  changes which causes the
bifurcation curve to have negative slope.

At El we have det C < 0 and [2 + y;f[(yT)]  < 0, so dG/dcrr  is
negative from (3.9). The denominator in (3.10) is positive. Since
fi(yG)  > 0, i t  is clear that the first two terms in the numerator
in (3.10) are positive. For the third term in the numerator to be
positive we assume that fy(y;)  2 0. In the case of density-dependent
stocking or harvesting, these three terms force dG/da  to be positive
and, hence, the curve LX has positive slope at (0,&r). By combining
the third and fourth terms in the numerator of (3.10),  we see that if
[fi(yi)]’ - 2fy(yi)  < 0 then dG/da  is positive and, hence, the curve
KY  also has positive slope in the case of constant rate stocking or
harvesting. However, below we discuss an example in the constant
rate case where [fi(yi)] 2 is large enough so that the fourth term in
the numerator of (3.10) forces dG/da  to be negative and, thus, the
bifurcation curve BC has negative slope at (0, &I),  see Figure 3.
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Cl1

3
a

FIGURE 3. Bifurcation curve for (4.1) and arrows indicating parameter
variations.

Consider a pioneer population with the linear fitness and a climax
population with the quadratic fitness given by the following forms:

(4.1) fl  (Yl> = 3.5 - 2Yl and fi(yz) = iys  - ayz  - i.

With these fitnesses yz  = 1.25, yz = 1, fi(yr)  = -2, and fi(ya) = 1.
We assume that  cl2 = csr  = 1 and ~22  = 0.2. The inequality
conditions in (i) hold and the period-doubling bifurcation occurs at
tll = 85176  M 1.1184 where Er  = (57/59,10/59)  M  (0.9661,0.1695).
Computing (3.9) and (3.10) we have

(4.2) g = -2166 z -7.3424 and - dG = - -79
295 da

E
285

-0.27719.

Thus the slope of the bifurcation curve BC is approximately -0.03775.
When a = 0, Er  loses stability as cl1 increases through 211 into the
region above the bifurcation curve as indicated by the arrows on the
err-axis  in Figure 3. To restabilize Er  by varying a we must proceed
back below t3C which is accomplished by moving left along the dashed
line in Figure 3, i.e., we must harvest the pioneer population.
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Numerical experiments suggest that the period-doubling bifurcations
which occur as cl1  increases through ?ir are subcritical, i.e., there
is an unstable 2-cycle for cii < Zri which coalesces with the stable
equilibrium Ei when cir = &r and which results in Ei being unstable
for cl1  > 211.  From Selgrade and Roberds [25],  signs of two formulas
must be calculated to establish rigorously that this bifurcation is
subcritical. One sign is for equation (2.20) which is always negative
in case (i) because det C < 0 and the remaining terms in (2.20) are
positive. The other formula needed to determine the direction of
bifurcation is equation (3) in Selgrade and Roberds [25].  For a pair
of general fitnesses satisfying (i), the sign of this formula is too difficult
to determine. However, for the linear pioneer and the quadratic climax
in (4.1) this formula yields M -44.1676. Thus the curve of period-2
points has negative concavity and, hence, the bifurcation is subcritical.

5. Restabilizing the equilibrium of competitive type. For
the equilibrium Ez of competitive type to lose stability at cii,  one of
the conditions (ii), (iii), or (iv) must be satisfied. Since dG/dcii # 0,
the bifurcation curve t3C  is still the graph of cl1  as a function of a
near (0,211);  but its slope is more difficult to determine. Recall that
fi(y$)  < 0 and det C > 0. Assuming &‘(y;)  > 0, from (3.10) we see
that the first and third terms of the numerator of aG/da  are negative
and the second and fourth terms are positive. Here we illustrate that in
some situations dG/da  is positive and in other situations it is negative.

First we illustrate how varying the size of fr(yr) can change the
sign of dG/da.  Consider the inequality conditions in Case (iv) and
assume that the pioneer fitness is linear so fr(yi) = 0. By expanding
and rearranging terms in (3.10), we see that the numerator of dG/da
becomes

c12c21[2  - Yz*f~(Y2+)l[f:(YT)12(Y;C22  - Yh2)

(5.1) - 2c12c21c22.f;(YTP + YX(Y2+)1

+ c2lc22.f;(Y;)[2  + YX(YWC22  + fxYxY;c22 - Yh2)).

Each term in (5.1) is positive so the numerator of dG/da  is positive,
and the denominator is negative. Hence, dG/da  < 0. From (3.9) we see
that dG/dcii  > 0. Thus the slope of the bifurcation curve is positive.
Since (2.11) is positive, E2  loses stability as cl1  decreases through &I.
In this case harvesting is needed to restabilize E2.
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However, if we take a pioneer fitness with large positive concavity, we
can produce an example where dG/da  > 0 and stocking is required to
restabilize Ez. When fy(1~:) > 0, we see from (3.10) that we add the
following negative term to (5.1) to obtain the numerator of dG/da:

(5.2) -hm.f~(~~)(~Tc22  - z&12).

In Selgrade [21], an exponential pioneer is used to produce a negative
numerator for dG/da.  However, the same function will not work here
because of the presence of an additional term in (5.1) with [fi(yr)12.
Instead we use a rational function for the pioneer fitness similar to those
studied by Hassel and Comins [15]. Consider the following fitnesses
where p > 0:

(5.3)
1

fl(yl)  = (0.5 + y1)p
and f~(yz)  = yz exp(2 - 2~2).

For these fitnesses yT  = 0.5, Y2*  = 1, f:(Y;)  = -P, fi’(Y?)  = P(P+  11,
and fi(yz) = -2.  Assume that cl2 = ~21  = 1 and czz  = 3. So the
bifurcation occurs at E2  = (l/19,6/19)  when err = 3.5. The exponent
p = 10 is the smallest integral value of p so that the numerator of
dG/da  is negative. With p = 10, we compute

dG 1 dG 2-=-
da 5

and - = -.
dCl1  19

Thus for this pioneer fitness the slope of the bifurcation curve BC is
equal to -1.9 at (a, &I)  = (0,3.5), and stocking is needed to restabilize
E2.

Finally, we discuss an example where a cascade of period-doubling bi-
furcations resulting in a strange attractor may be reversed by constant
rate stocking. Consider a linear fitness for the pioneer and a quadratic
fitness for the climax having the forms:

(54 fl(Y1)  = 2 - Yl and f2(~2)=4~2-~22-2.

With these fitnesses y*
We aSSume  that c12 l==c’,;  ‘i =1 ‘c$‘z;;  1 -f;.an$$‘~~q;a;;
conditions in (iii) hold and the period-doubling bifurcation occurs at
El1 = 23166 M  0.34848 where E2  = (33/14,5/28).  Selgrade and
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Roberds [25] prove that a period-doubling bifurcation occurs as cl1
increases through Zii giving rise to a stable 2-cycle, and numerical
experiments indicate that as cl1 increases up to 0.391 a period-doubling
cascade results in a strange attractor. From (3.9) and (3.10),  we
conclude that the slope of the bifurcation curve BC is approximately
0.17414 at (a,Eir) = (0,23/66). Hence  stocking is needed to reverse
the first period-doubling bifurcation and to restabilize the equilibrium,
as indicated by the dashed arrows in Figure 4. Using the tangent
line to the bifurcation curve as a guide, we surmise that if cl1 = 0.36
then stocking at a rate of a = .07 will result in a stable equilibrium.
Numerical experiments confirm our predictions. In addition, if cii =
0.391 and a varies from 0 to 0.26, then the cascade of bifurcations is
reversed and a stable equilibrium is restored. Such a reversal is similar
to that observed by Selgrade [21]  for density dependent stocking with
the parameter ranging from 0 to 0.11. Thus the interval over which the
parameter must vary to reverse the cascade is more that twice as long
for the constant rate stocking as compared to the density dependent
stocking.

6. Summary and biological interpretations. Here we study
period-doubling bifurcations for two-dimensional, discrete population
models of Kolmogorov type, where each per capita fitness function de-
pends on a linear combination of the densities of the interacting popula-
tions. We assume that one population has a pioneer (decreasing) fitness
and the other, a climax (one-humped) fitness. For an equilibrium of
such a system to lose stability via period-doubling, it is necessary that
the slope of the climax fitness at equilibrium has sign opposite that
of the difference between the intraspecific and the interspecific compe-
tition, i.e., det C. If the interspecific competition is greater than the
intraspecific competition and the climax fitness is increasing at equi-
librium so that the climax population is behaving like a predator, then
this provides two sources of stress on the pioneer and permits destabi-
lizing bifurcation. We say that such an equilibrium is of prey-predator
type. On the other hand, if the intraspecific competition is greater
than the interspecific competition and the climax fitness is decreas-
ing at equilibrium so that both populations are truly competing with
each other, then the climax population is under stress and destabilizing
bifurcation may occur. We say that such an equilibrium is of compet-
itive type. In each case, we obtain necessary and sufficient conditions
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c11

unstable

stable

a

FIGURE 4. Bifurcation curve for (5.2) and arrows indicating parameter
variations.

for destabilizing period-doubling bifurcation, see Proposition 2.1, with
respect to the pioneer self-crowding parameter. Similar results may be
obtained for other intrinsic interaction parameters, i.e., the entries in
the interaction matrix C.

To reverse the period-doubling bifurcation and restabilize the equilib-
rium we consider stocking or harvesting the pioneer population, which
is an extrinsic strategy that could be used by an ecosystem manager to
re-establish stability. We show that, generically, it is always possible to
restabilize the equilibrium, see Proposition 3.1. We compare the effects
of constant rate stocking or harvesting to a stocking or harvesting rate
proportional to the pioneer density.

A crucial factor in determining whether stocking or harvesting will
restabilize the equilibrium is the pioneer fitness variation

(6.1) 2 + Y;fl(Y;)

where y; is the weighted total density of the pioneer at equilibrium and
fi is the pioneer fitness. If (6.1) is negative then there is a significant
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decrease in pioneer fitness from its maximum value to its value at
equilibrium. This is precisely the case when an equilibrium of prey-
predator type loses stability, i.e., the pioneer’s (the prey) diminished
ability to reproduce and the climax’s (the predator) reliance on the
pioneer result in equilibrium instability. In this case, biological intuition
suggests that stocking the pioneer may restabilize the system. In fact,
we show that stocking the pioneer is the only way to restabilize the
equilibrium if the stocking is proportional to density and the pioneer
density has nonnegative concavity (which is the case for all familiar
examples in the modeling literature). However, if the stocking is at a
constant rate then the situation is more complex and, in Section 4, we
present examples where either stocking or harvesting the pioneer will
restabilize the equilibrium.

When an equilibrium of competitive type loses stability, (6.1) may be
positive or negative, see inequalities (2.14),  (2.15),  and (2.16). Section 5
discusses reversing this bifurcation using stocking or harvesting. How-
ever, there appears to be little biological motivation for determining
which strategy will restabilize an equilibrium of competitive type.
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